A novel assay evaluating mitophagy in postmitotic skeletal muscle cells

Michael Webb, Jyoti Malhotra, Chui-Se Tham, Doug McMillin and Effie Tozzo
Mitobridge, Inc. Cambridge, MA 02138

Abstract

We developed a quantitative assay for mitophagy in postmitotic C2C12 muscle cells. The assay employs an ELISA readout and is simple and robust. Mitochondrial DNA synthesis was stimulated pharmacologically by an AMPK activator described by Xiao et al. (2013) and referred to as compound 991. Cells were exposed to this compound (10μM) for two hours, followed by which they were allowed to incorporate the thymidine analogue bromodeoxyuridine (BrdU) into newly synthesized DNA for a further two hours. AMPK activation induced a 4-10 fold increase over background in the incorporation of BrdU. Microscopic examination confirmed that in these postmitotic cells, incorporated BrdU was localised to mitochondria and not nuclei. During subsequent culture after removal of BrdU, the level of label in cells declined with time to approximately 25% by 24 hours, and to background levels by 48 hours. The membrane depolarising carbonyl cyanide m-chlorophenyl hydrazone (CCCP) accelerated this process, such that at 6 hours, the BrdU signal was reduced to between 0.25-0.3 of initial levels. Pretreatment with bafilomycin, an inhibitor of early endosome degradation, for 44 hours, partially reversed the CCCP stimulated loss of BrdU. We confirmed by confocal microscopy that the BrdU in bafilomycin-treated cells colocalised with EEA1, a marker of early endosomes. Finally, we showed that treatment with 50μM ursolic acid, a known promotor of mitophagy, accelerated BrdU signal loss such that at 6 hours, treated cells displayed about 50% of the untreated control value. This assay represents a robust and simple method to evaluate compounds that affect mitophagy in postmitotic muscle cells.

Introduction

Mitochondrial biogenesis and mitochondrial autophagy (mitophagy) regulate cellular adaptation in response to mitochondrial dysfunction. It has been recognised increasingly in recent years that defects in the dynamic mechanisms of biogenesis, fission / fusion, and mitophagy, underlie many different disease processes. Altered mitochondrial dynamics may be the cause of various pathologies not necessarily associated with genetic defects in mitochondrial DNA. Mitophagy has typically been studied by microscopic methods, either electron microscopy that can directly reveal the containment of mitochondria within phagolysosomal structures, or fluorescence microscopy, and these methods are relatively low throughput and not amenable to adaptation for drug discovery. In this study, we developed a simple readily quantitated ELISA assay for mitophagy applicable to differentiated skeletal muscle and potentially other post-mitotic cells.

Figure 1: Schematic representation of assay

Materials and Methods

We synthesised the AMPK activator characterised and referred to as compound 991 by Xiao et al. (2013); this compound was originally described in the patent literature (Giordanetto et al., 2012) as a cyclic benzimidazole derivative of compound A. 270662 (Cool et al., 2006). C2C12 cells were differentiated for 5 days as described by Kubo (1995) and then treated with compound 991 (10μM) for 2 hours, after which they were cultured with BrdU (10μM; Roche BrdU labelling kit) for a further 2 hours. BrdU was removed and additional treatments applied as described. The membrane depolarising agent carbonyl cyanide m-chlorophenyl hydrazone (CCCP) was used at 20μM. At varying time points the cells were fixed and processed for BrdU ELISA detection using the Roche kit protocol; in some experiments, signals were amplified by using a one hour incubation with an intermediate biotinylated goat anti-mouse IgG to detect the kit-supplied mouse anti-BrdU antibody, followed by Streptavidin HRP for 1 hr (1:10,000 dilution). Signal was detected after washing using TMB substrate. For imaging, primary antibodies used overnight were anti-BrdU (1:50) and anti-EAa1 (1:200), detected with secondary FITC or Texas red labelled species, as appropriate. For cytology, cells were dissociated after treatment with enzyme solution and stained with antibodies against cytochrome oxidase subunit 4 and then subjected to cytometry.

Results

Figure 2: Only mitochondria are labelled with BrdU in postmitotic skeletal muscle cells

Figure 3: Basal and stimulated mitophagy assayed by BrdU label attenuation

Figure 4: Flow cytometry confirms loss of membrane potential and mitochondrial mass on CCCP treatment

Figure 5: Endosomal localisation of incorporated BrdU and effect of urolithin

Conclusions and Future Directions

We describe a simple medium-throughput quantitative assay for studying mitophagy in a skeletal muscle cell line which does not require microscopy or cytometry. We are currently extending the assay to confirm its general applicability to all post mitotic cell types.

References